Direct transfer of preformed patterned bio-nanocomposite films on polyelectrolyte multilayer templates.
نویسندگان
چکیده
Microarrays containing multiple, nanostructured layers of biological materials would enable high-throughput screening of drug candidates, investigation of protein-mediated cell adhesion, and fabrication of novel biosensors. In this paper, we have examined in detail an approach that allows high-quality microarrays of layered, bionanocomposite films to be deposited on virtually any substrate. The approach uses LBL self-assembly to pre-establish a multilayered structure on an elastomeric stamp, and then uses microCP to transfer the 3-D structure intact to the target surface. For examples, different 3-D patterns containing dendrimers, polyelectrolyte multilayers and two proteins, sADH and sDH, have been fabricated. For the first time, the approach was also extended to create overlaid bionanocomposite patterns and multiple proteins containing patterns. The approach overcomes a problem encountered when using microCP to establish a pattern on the target surface and then building sequential layers on the pattern via LBL self-assembly. Amphiphilic molecules such as proteins and dendrimers tend to adsorb both to the patterned features as well as the underlying substrate, resulting in low-quality patterns. By circumventing this problem, this research significantly extends the range of surfaces and layering constituents that can be used to fabricate 3-D, patterned, bionanocomposite structures. [image in text]
منابع مشابه
Selective depositions on polyelectrolyte multilayers: self-assembled monolayers of m-dPEG acid as molecular template.
This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of c...
متن کاملElectroactive properties of the multilayer films containing Prussian Blue nanoparticles
In our work we have focused on the incorporation of Prussian Blue nanoparticles (NP) into polyelectrolyte multilayer films (PEM). The main goal of presented studies was to obtain polymer/nanoparticles films with controlled electroactive properties. The amount and ordering of deposited nanoparticles depended on the adsorption conditions of the underlying polymer anchoring layer. In the case of f...
متن کاملPatterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates.
This paper describes the formation of patterned cell co-cultures using the layer-by-layer deposition of synthetic ionic polymers and without the aid of adhesive proteins/ligands such as collagen or fibronectin. In this study, we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated polystyrene (SPS) as the polycation and polyanion, respectively, to build t...
متن کاملFacile approach to graphene oxide and poly(N-vinylcarbazole) electro-patterned films.
A facile approach of making scalable nanocomposite and electro-patterned films using graphene oxide (GO) and poly(N-vinylcarbazole) (PVK) is reported. The method involves the layering of polystyrene colloidal templates, electrodeposition of the composite film on template array, and finally removal of the sacrificial templates to reveal the patterned GO-PVK arrays.
متن کاملSteel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations
Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2007